Rushing up Queries With Z-Order


Z-order is an ordering for multi-dimensional knowledge, e.g. rows in a database desk. As soon as knowledge is in Z-order it’s attainable to effectively search in opposition to extra columns. This text reveals how Z-ordering works and the way one can use it with Apache Impala.

In a earlier weblog submit, we demonstrated the facility of Parquet web page indexes, which may significantly enhance the efficiency of selective queries. By “selective queries,” we imply queries which have very particular search standards within the WHERE clause, therefore they usually return a small fraction of rows in a desk. This may generally occur in energetic archive and operational reporting use circumstances. However the model of web page index filtering that we described may solely search effectively in opposition to a restricted variety of columns. That are these columns? A desk saved in a distributed file system usually has partition columns and knowledge columns. Partition columns manage the information information into file system directories. Partitioning is hierarchical, which suggests some partitions are nested underneath different partitions, like the next:.

If we’ve got search standards in opposition to partition columns, it signifies that we are able to filter out complete directories. Nevertheless, in case your partitioning is simply too granular, i.e., you may have too many partition columns, then your knowledge can be unfold throughout plenty of small information. It will backfire while you run queries that must scan a big portion of the desk.

12 months=2020/month=03/day=01/hour=01/minute=00/country_code=…

Below the leaf partitions we retailer the information information, which comprise the information columns. Partition columns usually are not saved within the information since they are often inferred from the file path. Parquet web page index filtering helps us when we’ve got search standards in opposition to knowledge columns. They retailer min/max statistics about Parquet pages (extra on that within the aforementioned earlier weblog submit), so with their assist we solely must learn fractions of the file. But it surely solely works effectively if the file is sorted  (with the usage of the SORT BY clause) by a column, and we’ve got a search situation on that column. We are able to specify a number of columns within the SORT BY clause, however we’ll usually get nice filtering effectivity in opposition to the primary column, which dominates the ordering.

So we’ll have nice search capabilities in opposition to the partition columns plus one knowledge column (which drives the ordering within the knowledge information). With our pattern schema above, this implies we may specify a SORT BY “platform” to allow quick evaluation of all Android or iOS customers. However what if we wished to know how properly model 5.16 of our app is doing throughout platforms and nations?

Can we do extra? It seems that we are able to. There are unique orderings on the market that may additionally kind knowledge by a number of columns. On this submit, we are going to describe how Z-order permits ordering of multidimensional knowledge (a number of columns) with the assistance of a space-filling curve. This ordering allows us to effectively search in opposition to extra columns. Extra on that later.

Fundamental ideas

Lexical ordering

We talked about above which you can specify a number of columns within the SORT BY clause. The sequence of the kind columns within the SORT BY clause defines the group of the rows within the file. That’s, the rows are sorted by the primary column, and rows which have the identical worth within the first column are sorted by the second column, and so forth. In that sense, Impala’s SORT BY works much like SQL’s ORDER BY. This ordering is named “lexical ordering.” The next desk is in lexical order by columns A, B, and C:


To cite Wikipedia, “Z-order maps multidimensional knowledge to 1 dimension whereas preserving locality of the information factors.” By “multidimensional knowledge,” we are able to merely consider a desk, or a set of columns (the sorting columns) of the desk. Our knowledge isn’t essentially numerical, however whether it is numerical then it’s straightforward to consider the desk rows as “knowledge factors” in a multidimensional area:

“Preserving locality” signifies that knowledge factors (rows) which can be shut to one another on this multidimensional area can be shut to one another within the ordering. Truly, it received’t be true for all knowledge factors, however it is going to be true for many knowledge factors. It achieves that by defining a “area filling curve,” which helps to order the information. A “area filling curve” is a curve within the multidimensional area that touches all knowledge factors. For instance, in a 2D area the curve seems to be like the next:

In a 3D area the curve seems to be like this:

By wanting on the figures you most likely found out why it’s known as Z-order. Now, what it seems to be like in a 4D area is left to the reader’s creativeness.

Word that the factors which can be shut to one another are largely shut to one another on the curve as properly. This property, mixed with the min/max statistics within the Parquet web page index, lets us filter knowledge with nice effectivity.

It’s additionally essential to level out that Parquet web page indexing and Z-ordering works on completely different ranges. Which means that no modifications had been launched to the reader; the algorithms described in our earlier weblog submit nonetheless work.

Use circumstances for Z-order

There are some workloads which can be extraordinarily appropriate for Z-order. For instance, telecommunications and IoT workloads. It is because Z-order is best when the columns within the Z-order clause have comparable properties by way of vary and distribution. Columns with a excessive variety of distinct values are usually good candidates for Z-ordering.

In telecommunications workloads, it is not uncommon to have a number of columns with the identical properties, like sender IP and phone quantity, receiver IP and phone quantity, and many others. In addition they have a excessive variety of distinct values, and the sender/receiver values usually are not correlated.

Subsequently, a desk that shops telephone calls might be Z-ordered by “call_start_timestamp,” “caller_phone_number,” or “callee_phone_number.”

In some IoT use circumstances we’ve got plenty of sensors that ship telemetric knowledge, so it’s frequent to have columns for longitude, latitude, timestamp, sensor ID, and so forth, and for queries to filter knowledge by these dimensions. For instance, a question may seek for knowledge in a specific geographic area (i.e., filtering by latitude and longitude) for a time period (e.g., a month).

Nonuse circumstances for Z-order

  • In case you have columns which have some correlation between their ordering, like departure time and arrival time, then there is no such thing as a must put each of those in Z-order as a result of sorting by departure time nearly at all times kinds the arrival time column as properly. However after all, you may put (and possibly ought to) “departure time” in Z-order with different columns that you simply wish to seek for.
  • Search by columns which have only some distinct values. In that case there’s no large distinction between lexical ordering and Z-order, however you may wish to select lexical ordering for quicker writes. Otherwise you may simply partition your desk by such columns. Please word that the variety of distinct values impacts the format of your Parquet information. Columns which have few distinct values have few Parquet pages, so web page filtering can develop into coarse-grained. To beat this you need to use the question choice “parquet_page_row_count_limit” and set it to twenty.000. 

How one can use Z-order in Apache Impala

As we talked about earlier, with the “SORT BY (a, b, c)” clause your knowledge can be saved in lexical order in your knowledge information. However that is solely the default conduct; you may as well specify an ordering for SORT BY. There are two orderings on the time of writing:

  • SORT BY LEXICAL (a, b, c)
  • SORT BY ZORDER (a, b, c)

Whichever ordering works higher for you will depend on your workload. Z-order is a greater general-purpose alternative for ordering by a number of columns as a result of it really works higher with a greater variety of queries.

Let’s check out an instance that everybody can attempt on their very own. We’re going to make use of the store_sales desk from the TPC-DS benchmark:

CREATE TABLE store_sales_zorder (

  ss_sold_time_sk INT, ss_item_sk BIGINT,

  ss_customer_sk INT, ss_cdemo_sk INT,

  ss_hdemo_sk INT, ss_addr_sk INT,

  ss_store_sk INT, ss_promo_sk INT,

  ss_ticket_number BIGINT, ss_quantity INT,

  ss_wholesale_cost DECIMAL(7,2), ss_list_price DECIMAL(7,2),

  ss_sales_price DECIMAL(7,2), ss_ext_discount_amt DECIMAL(7,2),

  ss_ext_sales_price DECIMAL(7,2), ss_ext_wholesale_cost DECIMAL(7,2),

  ss_ext_list_price DECIMAL(7,2), ss_ext_tax DECIMAL(7,2),

  ss_coupon_amt DECIMAL(7,2), ss_net_paid DECIMAL(7,2),

  ss_net_paid_inc_tax DECIMAL(7,2), ss_net_profit DECIMAL(7,2),

  ss_sold_date_sk INT


SORT BY ZORDER (ss_customer_sk, ss_cdemo_sk)


I selected the columns “ss_customer_sk” and “ss_cdemo_sk” as a result of they’ve essentially the most distinct values on this desk. Since I offered the SORT BY ZORDER clause within the CREATE TABLE assertion, all INSERTs in opposition to this desk can be Z-ordered. To make the measurements less complicated we’re setting “num_nodes” to 1. This manner we’ll have a single Parquet file and the question profile can be additionally less complicated to investigate.



00:SCAN HDFS [tpcds_parquet.store_sales]

   HDFS partitions=182set num_nodes=1;

clarify insert into store_sales_zorder choose * from store_sales;

WRITE TO HDFS [store_sales_zorder, OVERWRITE=false]

|  partitions=1



|  order by: ZORDER: ss_customer_sk, ss_cdemo_sk

|  row-size=100B c4/1824 information=1824 measurement=196.92MB

   row-size=100B cardinality=2.88M

Let’s check out how effectively we are able to question our tables by the Z-ordered columns. However earlier than that allow’s check out column statistics.

Discovering the outlier values is simply too straightforward for web page filtering, so let’s seek for the typical values:

choose ss_customer_sk

from store_sales_zorder

the place ss_customer_sk = 49969;


choose ss_cdemo_sk

from store_sales_zorder

the place ss_cdemo_sk = 961370;


After executing every question we are able to examine how environment friendly web page filtering was by wanting on the question profile. Seek for the values “NumPages” and “NumStatsFilteredPages.” The latter is the variety of pages which were pruned. I summarized our ends in the next desk:

In our instance queries we solely referred to a single column to measure filtering effectivity exactly. If we had issued SELECT * FROM retailer sales_zorder WHERE ss_cdemo_sk = 961370 then the numbers would have been 3035 for NumPages and 2776 for NumStatsFilteredPages (91.5% filtering effectivity). Filtering effectivity is proportional to the desk scan time.

We offered an instance that may be tried out by anybody. We acquired fairly good outcomes even when this instance isn’t essentially the most supreme for Z-order. Let’s see how Z-order can carry out in one of the best circumstances.

How a lot does Z-ordering speed up queries?

With the intention to measure the effectiveness of Z-order, we selected a deterministic technique of measuring question effectivity, as an alternative of simply evaluating the runtimes of queries. That’s, we counted the variety of pages we may skip in Parquet information, i.e., how a lot of the uncooked knowledge within the information we may skip over with out scanning (for extra particulars on how the filtering works see the aforementioned weblog submit). This metric is strongly correlated with question runtime, however provides us extra exact, repeatable outcomes.

As we’ve got talked about, Z-ordering is focused at actual workloads from, for instance, IoT or telecommunications, however first we are going to consider it on randomly generated values. We first run easy queries on uniformly distributed values taking on 5GB of area.

  • Choosing first sorting column, a:
    choose a from uniformly_distributed_table the place a = <worth>
  • Choosing second sorting column, b:
    choose b from uniformly_distributed_table the place b = <worth>

We in contrast how these queries carried out when the desk was sorted lexically and utilizing Z-ordering (ie. SORT BY LEXICAL/ZORDER (a, b)). The determine beneath reveals the proportion of filtered Parquet pages for the 2 queries. As anticipated, and as you may see beneath, for filtering on the primary column (coloured blue) lexical ordering at all times wins, it will possibly filter out extra pages. Nevertheless, Z-ordering doesn’t fall a lot behind. Subsequent, we in contrast the second columns (coloured orange), we are able to see that Z-ordering rocks! The filtering functionality of the second column is near the primary and a lot better than with lexical orderingwe gave up a little bit efficiency on queries that filter by the primary column, however acquired an enormous efficiency enhance for queries that filter by the second column.

Now on the second determine, we kind by 4 columns. Which means we are going to surrender extra filtering energy for the primary row, however achieve comparatively so much for the opposite columns. That’s the impact of making an attempt to protect the four-dimensional locality: the information isn’t sorted completely by any single column, however we get nice outcomes with the others which can be shut to one another.

The price of Z-ordering

In fact, there must be a value as a way to obtain such nice outcomes. We measured that the sorting of the columns when writing an information set took round seven instances longer utilizing Z-order than once we used lexicographical ordering.

Nevertheless, sorting the information is required solely as soon as when writing the information to a desk, after which we get the benefit of big speed-ups when querying the desk.

There are additionally sure circumstances the place Z-ordering isn’t efficient or it doesn’t present as a lot speed-up as proven above. That is the case when the values are both in a comparatively small vary or too sparse. The issue with a small vary is that the values can be too shut to one another and even be the identical for one Parquet web page. That approach, Z-ordering would simply add the overhead of the sorting, however wouldn’t present any advantages in anyway. When the information is simply too sparse, their binary illustration would have a excessive probability to be distinct and our algorithm would find yourself sorting it lexically. Utilizing multi-column lexical sorting could be extra applicable in these circumstances.

We’ve proven the advantages of Z-ordering. However how does all of it truly work? Let’s discover out!

Behind the curtains

To dig deeper into Z-order, let’s first contemplate a desk with two integer columns, ‘x’ and ‘y,’ and take a look at how they’re sorted in Z-order. As an alternative of the plain numbers, we are going to use the binary equal to finest illustrate how Z-order works.

Within the above determine, the headers of the desk present the values for every column, whereas within the cells we see the interleaved binary values. If we join the interleaved values in numerical order, we get the Z-ordered values of the 2 columns. This will also be used to match the rows of two tables: (1, 3) < (2, 0).

Now we see how we are able to order the values of two tables, and right here’s the excellent news: it really works the identical for extra columns. We simply should interleave the bits of every row after which we’d solely have to match these binary numbers. However wait! Wouldn’t that be too pricey? Properly, sure. Happily, we’ve got a greater answer.

Think about a desk with n columns, the place we wish to examine two rows in Z-order. How can we optimally determine which row is bigger? For that, first let’s take into consideration evaluating two binary numbers. On this case, we undergo the bits one after the other till the primary place the place the bits differ. We name this place essentially the most important dimension (MSD) of the binary values. The row having the ‘1’ bit right here could be better than the opposite. Now let’s try this with out truly interleaving the bits. On high of that, let’s do the comparability not just for two, however n instances two binary numbers (two rows which have n columns). So we take the binary values and decide which column is essentially the most important (MSD) for this pair of rows. It will likely be the column for which the 2 rows differ within the highest bits. We additionally loop by the columns within the order outlined within the SORT BY ZORDER clause. That approach, in case of equal highest MSDs, we choose the primary. As soon as we’ve got the MSD (the dominating column) for this pair of rows, we simply want to match the row values of this column.

Right here is the important thing algorithm in a Python code fragment.

Working with differing kinds

Within the algorithm above, we described easy methods to work with unsigned binary integers. With the intention to use different varieties, we are going to choose unsigned integers because the frequent illustration, into which we are going to rework all accessible varieties. The transformations from the unique a and b values to their frequent illustration, a’ and b’, has the next conduct: if a < b then a’ is lexically lower than b’ relating to their bits. Thus, for ints INT_MIN could be 000…000, INT_MIN+1 could be 000…001, and so forth, and in the long run INT_MAX could be 111…111. The fundamental idea of getting the shared illustration for integers follows the steps beneath:

  1. Convert the quantity to the chosen unsigned kind (U).
  2. If U is larger in measurement than the precise kind, the bits of the small kind are shifted up.
  3. Flip the signal bit as a result of the worth was transformed to unsigned.

With numbers of various sizes (SMALLINT, INT, BIGINT, and many others.) we retailer them on the smallest bit vary that they match into, from 32, 64, and 128 bit ranges. That signifies that once we are changing the values into a standard illustration, we first should shift them by the distinction of the variety of their bits (second step). Our goal illustration is unsigned integer, subsequently we may also should flip the primary bit accordingly (third step).

We deal with all the opposite impala easy knowledge varieties as follows:

  • In case of floats, we must contemplate getting completely different NaN values, these circumstances can be dealt with as zero. Floating detrimental values are represented otherwise, in these circumstances, all bits should be flipped (in distinction to the third step for integers).
  • Date and timestamp varieties even have their inner numeric illustration, which we are able to work with after the above conversions. 
  • Variable size strings and chars even have their integer illustration, the place we extract the bits primarily based on the string’s size and fill the tip with zeros. 
  • Lastly, we deal with null values as unsigned zero.

Now we’ve got lined all Impala easy varieties, which means we are able to harvest the alternatives from Z-ordering not just for integers, however for all easy varieties.


On this article, we launched an ordering that preserves locality, permitting us to vastly improve pace up of selective queries not solely on the primary sorted column, but in addition on all of the sorting columns, displaying solely minor variations by way of efficiency when filtering completely different columns. Utilizing Z-ordering in Impala supplies super alternative when all of the columns are (nearly) equally often queried and have comparable properties, like in telecommunications or IoT workloads. Z-order is out there in upstream Impala from model 4.0. In Cloudera releases, it’s accessible from CDH 7.2.8.


Please enter your comment!
Please enter your name here